Combinatorics Mid-Term Examination 8th March 2013

Instructions: All questions carry equal marks. All sets and collections in the questions are assumed to be finite!

- 1. Let B_1, \ldots, B_n be a collection of subsets of a set S such that union of any l of B_i 's contain at least l elements for any $1 \leq l \leq n$. Prove that we can choose $b_i \in B_i$ such that $b_i \neq b_j$ for all $i \neq j$.
- **2.** Let m < n be positive integers. Show that $m \le \frac{n}{2}$ is a necessary and sufficient condition for the existence of a Latin square of order n containing a Latin subsquare of order m.
- **3.** Define a Linear Space. Prove that for a linear space with at least two lines, the number of lines is at least as much as the number of points.
- **4.** Define a *t*-design. Prove that a *t*-design is also an *i*-design for all $1 \le i \le t$.
- **5.** Define support of a binary codeword. Let C be a perfect binary e-error-correcting code of length n. Let $\mathcal{P} = \{1, 2, ..., n\}$. Show that \mathcal{P} together with the supports of codewords of weight 2e + 1 form a S(e+1, 2e+1, n) design (with $\lambda = 1$).